
1. Introduction
Among natural hazards, riverine floods are one of the most devastating, leading every year to severe infrastruc-
tural damages and human life losses across the world (Marcolongo et al., 2022; Wallemacq & House, 2018). In 
addition, they could become more frequent in the future, caused by an increase in frequency and intensity of 
extreme precipitation events projected due to anthropogenic climate change (Ali & Mishra, 2018; Papalexiou & 
Montanari, 2019; Wasko & Sharma, 2017). Floods are a significant concern in monsoonal regions since most 
precipitation is concentrated just in a few months, such as in India, which receives over the 80% of the total annual 
rainfall during the summer monsoon (June–September) season. These rainfall events are caused by synoptic-scale 
cyclonic depressions (Hunt & Fletcher, 2019; Hunt et al., 2016; Nanditha et al., 2022), leading to several floods 
in different rainfed basins across the country during the monsoon season. One of these basins is the Narmada 
River basin (NRB), located in the Central India region, covering four states (Madhya Pradesh, Gujarat, Mahar-
ashtra, and Chhattisgarh). In this region, there are high population centers and several reservoirs that are not well 
managed. In addition to that, India’s current operational flood forecasting system provides poor predictive skill 
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since it works based on statistical models with gauge-to-gauge discharge correlations and coaxial correlations that 
use discharge and rainfall for most locations (CWC, 2015). These antecedents point to a critical need for skillful 
daily streamflow forecasts in the basin that could help mitigate the flood effects.

Recently, Ossandón et al. (2021) proposed a Bayesian hierarchical network model (BHNM) for daily streamflow 
ensemble forecasting and implemented it for this basin using observed streamflow and precipitation as predictors. 
BHNM provided promising results, but it was implemented only for a 1-day lead time and based on historical 
data. Motivated by these encouraging results, Ossandón et al. (2022) adapted the framework and applied it to 
“postprocess” simulated streamflow from the Variable Infiltration Capacity (VIC) model, including observed 
precipitation in the NRB. Their results showed that the model achieved homoscedasticity for the simulated resid-
uals and significantly improved the skill of postprocessed simulated streamflow, which surged the hopes for 
applying this framework to real-time forecasting. Tiwari et al. (2022) developed a daily deterministic forecast for 
the Narmada basin at different lead times using the VIC model and meteorological forecast as forcing to evalu-
ate the role of a bias correction method such as Quantile Mapping (QM) in postprocessing streamflow forecast. 
They found that the VIC model did not capture the high events well at the majority of the locations in the basin, 
but QM could significantly improve the forecast at 1–3-day lead time in terms of bias reduction. However, some 
scholars have stated that QM cannot ensure the reliability and coherence of forecasts since it does not consider 
the correlation between raw forecasts and observations (Zhao et al., 2017).

Past studies have demonstrated that multimodel combinations—such as Bayesian Model Averaging, to name one 
of them—tend to outperform a single model approach by combining information from multiple sources (e.g., 
Georgakakos et al., 2004; Krishnamurti et al., 2000; Mendoza et al., 2014; Rajagopalan et al., 2002). All these 
approaches are based on combining the information from multiple models with appropriate weights for each. 
Motivated by these results and the need for skillful long-lead daily flow forecast, we propose to adapt the Bayes-
ian hierarchical framework proposed by Ossandón et al. (2021, 2022) to develop a Bayesian hierarchical model 
combination (BHMC) framework that incorporates multiple sources of information and provides real-time daily 
ensemble streamflow forecasting for the peak monsoon season (July–August). We demonstrate it by its applica-
tion to the NRB. In this study, we apply this framework in this basin to demonstrate that it can (a) enhance the skill 
of real-time forecasts from hydrological models at different lead times and (b) deal with the heteroscedasticity 
of their residuals.

2. Study Area and Methods
2.1. Study Area

This study was conducted in the NRB in Central India. The flow direction in the basin is from east to west. It 
is the largest river in the country that drains into the Arabian Sea in the West (Figure 1). The NRB has an area 
of 97,882 km 2 and receives an average annual rainfall of 1,120 mm, and most of it arrives during the summer 
monsoon season (June–September). The upper parts of the basin receive higher precipitation than the lower 
basin. Several reservoirs have been built in the NRB for irrigation during the nonmonsoon season (few others 
have been designed for flood control) since it corresponds to an essential water source for the populous states 
of Madhya Pradesh and Gujarat. In the basin, most flood events occur during the July–August period; thus, this 
study will focus on that period.

2.2. Data

2.2.1. Historical Data Sets

This study used 0.25° gridded daily precipitation, maximum and minimum temperature, and wind data sets for 
1951–2018, developed by the India Meteorology Department (IMD). The daily gridded precipitation data set 
was obtained through interpolating observations from 6,995 rain gauge stations across India using an inverse 
distance weighting scheme (see Pai et al., 2014). The daily maximum and minimum temperature fields for the 
0.25° horizontal resolution grid were generated by interpolating observations from 395 stations across India 
using the Synergraphic Mapping approach (Maurer et al., 2002). The 2.5° gridded daily wind speed was obtained 
from the NCEP–NCAR reanalysis data set (Kalnay et al., 1996; Kistler et al., 2001) and regridded to a 0.25° 
grid to maintain consistency with other variables. Besides, from 1978 to 2018, we obtained from the India Water 
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Resource Information System observed daily streamflow and water storage at five gauges and reservoirs in the 
NRB (Figure 1).

2.2.2. Meteorological Forecast

We used a 0.25° gridded single trace meteorological forecast from the Global Forecast System (GFS), which 
was developed at the Indian Institute of Tropical Meteorology, as forcing for the hydrological forecast. The GFS 
provides precipitation, wind, and maximum and minimum temperature at a 3-hr temporal resolution. We used the 
meteorological forecast from the GFS for the monsoon season for the 2000–2018 period. Different studies have 
reported good performance of the GFS for the Indian region during the monsoon season (Kumar et al., 2019; 
Mukhopadhyay et al., 2019; Sridevi et al., 2020).

2.3. Methods: Bayesian Hierarchical Model Combination Framework

Considering observed information and meteorological forecasts are available at different lead times, the general 
BHMC framework comprises two components. The first component corresponds to deterministic streamflow 
forecasts obtained from z hydrological model at different lead times. The second is a Bayesian hierarchical model 
(BHM) that combines this information with other predictors, such as meteorological forecasts and past observa-
tions, to obtain posterior distributions or ensembles of streamflow forecasts. Figure 2 shows a flow chart of the 
BHMC framework for real-time daily ensemble streamflow forecasting at different lead times. In the first compo-
nent, for each forecast day, t, the calibrated hydrological model j is forced with observed meteorological data to 
simulate the initial hydrologic conditions for the day, t. With these initial conditions and meteorological forecasts, 
the z hydrological models generate streamflow forecasts for the following days. Then, in the second component, 
forecasted streamflows from z hydrological models and other suitable covariates are incorporated into a BHMC 
to generate predictive posterior distribution (i.e., ensembles) of streamflow at all the gauges on the river network.

While Figure 2 provides a general framework with multiple model inputs for combination, for this study in the 
NRB, we have a single hydrologic model, VIC, combined with observed and forecast meteorology. A brief 
description of these components of the daily ensemble streamflow forecasting system, their implementation, and 
the calibration approaches is provided below.

Figure 1. Map of the Narmada River basin (NRB), including five subbasin outlets (red circles), some of the major dams in 
the basin: Bargi, Tawa, Indirasagar, Jobat, and Sardar Sarovar (from upstream to downstream direction), and 150-m elevation 
bands. The gray circle represents an artificial gauge created for the Bayesian hierarchical model combination (BHMC).
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2.3.1. Hydrological Model: VIC Model

We used the VIC macroscale semidistributed hydrological model with three soil layers (Cherkauer et al., 2003; 
Liang & Xie, 2001; Liang et al., 1994, 1996) at a 0.25° horizontal resolution, considering the reservoir module 
developed by Haddeland et al. (2006) to simulate regulation effects on streamflow. The model requires gridded 
meteorological forcings (Section  2.2.1) and land surface characteristics for its implementation. Soil parame-
ters were obtained from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC,  2012). The 
vegetation library and vegetation parameters were obtained from the Land Data Assimilation System (Rodell 
et al., 2004) and Advanced Very High-Resolution Radiometers (Hansen et al., 2000; Sheffield & Wood, 2007), 
respectively.

The VIC model was calibrated and validated manually against observed daily streamflow at four gauges 
(Garudeshwar, Mandleshwar, Handia, and Sandiya) in the NRB (Figure 1). Its performance was evaluated using 
the coefficient of determination (R 2) and the Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970). NSE is a 
deterministic metric that varies (∞, 1], with a perfect score of 1, and it compares how accurate and informative 
the hydrological model is with respect to climatology. The results showed that the VIC model simulated daily 
streamflow agrees well against the observed flow at all the selected locations in the Narmada basin during the 
calibration and evaluation periods since NSE and R 2 were higher than 0.6 (Table 1). However, the VIC model 
did not capture the high events well at the majority of the locations in the NRB. We developed daily meteoro-

logical forcing of 10 days forecast at the five gauges in the NRB (Figure 1) 
for the monsoon (June–September) season for the 2003–2018 period. We 
simulated initial hydrologic conditions forcing the VIC model with the 
observed precipitation and maximum and minimum temperatures from IMD 
for each forecast date during the monsoon season. Using these simulated 
initial hydrologic conditions and meteorological forecasts from GFS as forc-
ings, the VIC model forecast was obtained for each forecast day during the 
monsoon season. Although the VIC streamflow forecasts were generated for 
lead times of up to 10 days for the entire monsoon season (June–September), 
this study only focuses on the 1–10-day forecast for the peak monsoon season 
(July–August). For further details about the VIC model implementation, cali-
bration, and forecast streamflow generation, the reader is referred to Tiwari 
et al. (2022).

Figure 2. Flow chart of the general Bayesian hierarchical model combination (BHMC) framework for real-time daily 
ensemble streamflow forecasting at different lead times.

Station

Calibration Validation

Period NSE R 2 Period NSE R 2

Garudeshwar 1973–1982 0.72 0.79 1984–1993 0.6 0.64

Mandleshwar 1973–1982 0.73 0.75 1987–1996 0.57 0.6

Handia 1979–1988 0.77 0.78 1994–2003 0.75 0.77

Sandiya 1990–1998 0.66 0.67 1999–2008 0.67 0.67

Table 1 
Metrics for Calibration and Evaluation of the VIC Model Against the 
Observed Daily Streamflows at Four Gauge Stations in the Narmada River 
Basin
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2.3.2. Bayesian Hierarchical Model Combination

The BHMC is implemented using the BHM proposed by Ossandón et al.  (2022) with modifications to allow 
streamflow forecasts from z (in this study, z = 1) hydrological models at the n (in this study, n = 5) gauges of the 
NRB (Figure 1) and each lead time as predictors. Thus, in the data layer, for a k-day lead time, the daily stream-
flow at the gauge i and day t, 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝑡𝑡
 , is assumed to follow a conditionally independent Gamma density function 

(Equation 1). In the first process layer, the density function parameters are expressed as a function of the expected 
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(𝑖𝑖)

03
, 𝜷𝜷

(𝑖𝑖)

𝑄𝑄1
, 𝜷𝜷

(𝑖𝑖)

𝑄𝑄2
, 𝜷𝜷

(𝑖𝑖)

𝑄𝑄3
, 𝜷𝜷

(𝑖𝑖)

𝑋𝑋1
, 𝜷𝜷

(𝑖𝑖)

𝑋𝑋2

]

 and 𝐴𝐴 𝝓𝝓(𝑖𝑖)
=

[

𝜙𝜙
(𝑖𝑖)

01
, 𝜙𝜙

(𝑖𝑖)

02
, 𝜙𝜙

(𝑖𝑖)

03
,𝝓𝝓

(𝑖𝑖)

𝑄𝑄1
,𝝓𝝓

(𝑖𝑖)

𝑄𝑄2
,𝝓𝝓

(𝑖𝑖)

𝑄𝑄3
,𝝓𝝓

(𝑖𝑖)

𝑋𝑋1
,𝝓𝝓

(𝑖𝑖)

𝑋𝑋2

]

 correspond 

to the vectors of regression coefficients for 𝐴𝐴 𝐴𝐴
(𝑖𝑖)

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝑡𝑡
 , respectively; 𝐴𝐴 𝑸𝑸

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 is the vector of the k-day lead stream-

flow forecasts from z hydrological models at the gauge i for day t; 𝐴𝐴 𝑿𝑿
(𝑖𝑖)

𝑡𝑡−𝑘𝑘
 is the set of other m hydrometeorological 

covariates at the gauge i for day t − k; 𝐴𝐴 𝐴𝐴
(𝑖𝑖)

𝑡𝑡−𝑘𝑘
 is the precipitation covariate at gauge i for day t − k; 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 is the k-day 

lead streamflow forecasts (f) at gauge i and day t from the model l; 𝐴𝐴 𝐴𝐴
(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 denotes the threshold considered for 

k-day lead streamflow forecasts at gauge i from the model l; and g(⋅) corresponds to a nonlinear transformation 
applied to the hydrological models’ streamflow forecasts. Only temporal covariates are considered to help capture 
nonstationarity. We included the nonlinear term in Equation  3 to address the hydrological model’s potential 
inability to capture high flow events. Equations 3 and 4 are simplified to a simple equation with 2(z + m + 1) 
regression coefficients when precipitation is not included as a covariate. We considered weakly informative 
normal priors centered at 0, with a standard deviation of 10 for the regression coefficients. The reader can find 
more details about the likelihood function in Equations S1 and S2 in Supporting Information S1.

In addition to the VIC streamflow forecast, other hydrometeorological covariates considered are as follows: the 
spatially averaged daily forecasted precipitation for the area between two consecutive gauges at the k-day lead 

time 𝐴𝐴

(

𝑃𝑃
(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓−𝑘𝑘

)

 , the daily VIC simulated streamflow 𝐴𝐴

(

𝑄𝑄
(𝑖𝑖+1)

𝑠𝑠𝑠𝑠𝑠−𝑘𝑘

)

 from the immediate upstream gauge, and the spatially 

averaged daily observed precipitation for the area between two consecutive gauges 𝐴𝐴
(

𝑃𝑃
(𝑖𝑖)

𝑡𝑡−𝑘𝑘

)

 . Also, we considered 
80th quantiles from VIC streamflow forecast for different lead times as the threshold in Equations 3 and 4 (see 
Table S1 in Supporting Information S1).

For each lead time, we fitted various candidate BHMCs using different combinations of covariates for 16 years 
(2003–2018). The best BHMC was selected based on the lowest value of the leave-one-out cross-validation 
information criteria (LOOIC; Vehtari et al., 2017). Candidate BHMCs were fit using the program STAN (Stan 
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Development Team, 2014) and its R extension (Stan Development Team, 2020). It uses a Markov chain Monte 
Carlo simulation algorithm (the No-U-Turn Sampler for the current example) to simulate the posterior probabil-
ity distribution of the regression coefficients. We simulated three chains, ran the model for 4,000 iterations, and 
the first half of the simulations were discarded as burn-in to ensure convergence. We set a thinning factor of 2 
to reduce the sample autocorrelation, resulting in 3,000 posterior samples (1,000 samples from each chain). To 
check the convergence of the posterior distribution of each regression coefficient, we used the shrink factor, 𝐴𝐴 �̂�𝑅 , 
proposed by Gelman and Rubin (1992)—values lower than 1.1 for all the regression coefficients suggest model 
convergence. Then, the posterior distributions of the parameters and the predictive posterior distribution of daily 
streamflow forecasts were represented by 3,000 ensemble members for each lead time.

2.4. Evaluation of the Streamflow Forecast Performance

The out-of-sample predictability of the multimodel forecast from the best BHMC for each lead time is assessed 
by performing a leave-1-year-out cross-validation for 2003–2018 (16 years). For this, the daily observations in a 
year are selected as validation data (62 days), and the data from the remaining 15 years are selected as training 
data for the best BHMC. Then, the trained BHMC is used to provide estimates for the one validation year. This 
procedure is repeated 16 times. We model and issue forecasts for 1–10-day lead times for each day in the season.

We compute two deterministic and one probabilistic performance metrics (Table 2). The deterministic perfor-
mance metrics are the Pearson correlation coefficient (R) and the relative bias (BIAS). The overall probabilistic 
skill is evaluated using the continuous ranked probability skill score (CRPSS; Hersbach, 2000), which quantifies 
the average error between a forecast cumulative distribution function (CDF) with that from the observation. CRPS 
corresponds to the mean absolute error for a deterministic forecast such as the VIC streamflow forecast. The asso-
ciated skill score (CRPSS) is computed using the formulation provided by Wilks (2011) and shown in Table 2. 

Notation Name Equation Description

CE Coefficient of efficiency
𝐴𝐴 𝐴𝐴𝐴𝐴 = 1 −

∑T
𝑡𝑡=1

(

𝑄𝑄𝑡𝑡−
̄̂
𝑄𝑄

)2

∑𝑇𝑇
𝑡𝑡=1 (𝑄𝑄𝑡𝑡−𝑄𝑄ref,𝑡𝑡)

2 
Deterministic metric that varies 𝐴𝐴 (∞, 1 ] , with a perfect score of 1. 

It compares how accurate and informative the model forecast 
is with respect to a reference forecast (Briffa et al., 1988).

R Correlation coefficient
𝐴𝐴 𝐴𝐴 =

∑𝑇𝑇
𝑡𝑡=1

(

�̂�𝑄𝑡𝑡−
̄̂
𝑄𝑄

)

(𝑄𝑄𝑡𝑡−�̄�𝑄)
√

∑𝑇𝑇
𝑡𝑡=1

(

�̂�𝑄𝑡𝑡−
̄̂
𝑄𝑄

)2
√

∑𝑇𝑇
𝑡𝑡=1 (𝑄𝑄𝑡𝑡−�̄�𝑄)

2

 
A deterministic metric that varies [−1, 1] with a perfect score of 

1. It measures the linear association between forecasts and 
observations independent of the mean and variance of the 

marginal distributions.

BIAS Relative bias
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

(

̄̂
𝑄𝑄−�̄�𝑄

)

�̄�𝑄
× 100 

Deterministic metric that varies (−∞, ∞), with a perfect score 
of 0%.

CRPSS Continuous ranked probability skill 
score

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 −
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓
 A probabilistic metric that varies 𝐴𝐴 ( − ∞, 1 , with a perfect score 

of 1. It measures the skill of CRPS relative to a reference 
forecast (Hersbach, 2000). A score of 0 means the same skill 

as the reference forecast, while a value below 0 indicates 
a lower skill than the reference forecast. CRPS quantifies 

the difference between the cumulative distribution function 
(CDF) of a forecast (F) and the corresponding CDF of the 

observations (Fo).

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1

𝑇𝑇

∑𝑇𝑇

𝑡𝑡=1
∫
∞

−∞
[𝐹𝐹 (𝑄𝑄) − 𝐹𝐹𝑜𝑜 (𝑄𝑄)]

2
𝑑𝑑𝑄𝑄 

𝐴𝐴 𝐴𝐴𝐴𝐴 (𝑄𝑄) =

⎧

⎪

⎨

⎪

⎩

0 𝑄𝑄 𝑄 𝑄𝑄𝐴𝐴

1 𝑄𝑄 𝑄 𝑄𝑄𝐴𝐴

 

PIT Probability integral transform (PIT) 
value

𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝐹𝐹 (𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) If PIT values are uniformly distributed, a set of forecasts at t = 1, 
2, …, T is reliable (Wang et al., 2009).

Α α-Index 𝐴𝐴 𝜶𝜶 = 1 −
2

𝑇𝑇

∑𝑇𝑇

𝑡𝑡=1
|𝑝𝑝 (𝑡𝑡) − 𝑝𝑝𝑈𝑈 (𝑡𝑡)| The α-index describes the tendency of PIT values to deviate 

from the diagonal in PIT plots. It varies between 0 (worst 
reliability, with all observed p values equal to 0 or 1) and 1 

(perfect reliability; Renard et al., 2010)

Note. T, number of observations; 𝐴𝐴 �̂�𝑄t , forecast ensemble mean for day t; 𝐴𝐴
̄̂
𝑄𝑄 , temporal average over forecast ensemble means; Qt, observation for day t; F(t, []), CDF of 

the forecast ensemble at time t; pU(t), theoretical value corresponding to 𝐴𝐴 𝐴𝐴 (𝑡𝑡) .

Table 2 
Performance Metrics Considered to Assess the Bayesian Hierarchical Model Combination Performance
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For CRPSS, we considered the VIC streamflow forecast and climatology as reference forecasts. Bootstrapping is 
applied to the historical streamflows (3,000 samples) to generate uncertainty for the performance metrics.

Although CRPSS measures both accuracy and reliability, we checked the reliability of the BHM streamflow 
forecast by the uniformity of the probability integral transform (PIT; Gneiting et al., 2007). For a perfectly relia-
ble forecast, PIT values should be uniformly distributed. Thus, PIT values are plotted against a standard uniform 
distribution in a PIT plot. Perfectly reliable forecasts follow the 1:1 line in PIT plots. Along with the PIT plot, 
we also computed the α-index to quantify the tendency of PIT values to deviate from the 1:1 line in PIT plots.

Reliability is a relevant feature but not enough for a good forecast—for example, a climatology forecast is 
perfectly reliable but does not hold information for short-term streamflow forecasting. Good forecasts need to be 
sharp while being reliable. If a forecast distribution is narrow, it is sharp. Here, we checked the forecast sharpness 
by the average width of the 95% confidence intervals (AWCI), which describes the ensemble spread (Gneiting 
et al., 2007; Li et al., 2017).

3. Results
3.1. Best Candidate BHMC Selection for Each Lead Time

For each lead time, the best BHMC was found to have the following structure for 𝐴𝐴 𝐴𝐴
(𝑖𝑖)

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝑡𝑡
 at gauge i for day t:

𝜇𝜇
(𝑖𝑖)

𝑡𝑡
=

⎧

⎪

⎨

⎪

⎩

𝛽𝛽
(𝑖𝑖)

01
+ 𝛽𝛽

(𝑖𝑖)

𝑄𝑄1

(

𝑄𝑄
(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡

)𝑎𝑎

+ 𝛽𝛽
(𝑖𝑖)

𝑋𝑋1
𝑋𝑋

(𝑖𝑖)

𝑡𝑡−𝑓𝑓
𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
≤ 𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓80𝑡𝑡𝑡

𝛽𝛽
(𝑖𝑖)

02
+ 𝛽𝛽

(𝑖𝑖)

𝑄𝑄2

(

𝑄𝑄
(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡

)𝑎𝑎

+ 𝛽𝛽
(𝑖𝑖)

𝑋𝑋2
𝑋𝑋

(𝑖𝑖)

𝑡𝑡−𝑓𝑓
𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
> 𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓80𝑡𝑡𝑡

 (5)

𝜎𝜎
(𝑖𝑖)

𝑡𝑡
=

⎧

⎪

⎨

⎪

⎩

𝜙𝜙
(𝑖𝑖)

01
+ 𝜙𝜙

(𝑖𝑖)

𝑄𝑄1
𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
+ 𝜙𝜙

(𝑖𝑖)

𝑋𝑋1
𝑋𝑋

(𝑖𝑖)

𝑡𝑡−𝑓𝑓
𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
≤ 𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓80𝑡𝑡𝑡

𝜙𝜙
(𝑖𝑖)

02
+ 𝜙𝜙

(𝑖𝑖)

𝑄𝑄2
𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
+ 𝜙𝜙

(𝑖𝑖)

𝑋𝑋2
𝑋𝑋

(𝑖𝑖)

𝑡𝑡−𝑓𝑓
𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
> 𝑄𝑄

(𝑖𝑖)

𝑓𝑓𝑓𝑓𝑓𝑓80𝑡𝑡𝑡

 (6)

The gauges were enumerated from downstream to upstream (Figure 1), that is, Garudeshwar (i = 1), Mandlesh-
war (i = 2), Handia (i = 3), Hoshangabad (i = 4), Sandiya (i = 5), and the artificial gauge (i = 6). Table 3 displays 
for each lead time, LOOIC values from the best candidate BHMC, the exponent of the VIC streamflow forecast 
covariate (a), and the specification of the additional covariate 𝐴𝐴

(

𝑋𝑋
(𝑖𝑖)

𝑡𝑡−𝑘𝑘

)

 . The significance of the regression coeffi-
cients (β and ϕ) was checked (posterior PDFs do not contain zero in the 95% credible interval).

Garudeshwar Mandleshwar Handia Hoshangabad Sandiya

Lead time k (days) LOOIC a 𝐴𝐴 𝐴𝐴
(1)

𝑡𝑡−𝑘𝑘
 a 𝐴𝐴 𝐴𝐴

(2)

𝑡𝑡−𝑘𝑘
 a 𝐴𝐴 𝐴𝐴

(3)

𝑡𝑡−𝑘𝑘
 a 𝐴𝐴 𝐴𝐴

(4)

𝑡𝑡−𝑘𝑘
 a 𝐴𝐴 𝐴𝐴

(5)

𝑡𝑡−𝑘𝑘
 

1 9,967 2.0 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−1
 2.5 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−1
 1.5 𝐴𝐴 𝐴𝐴

(3)

𝑡𝑡−1
 2.0 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−1
 2.0 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−1
 

2 9,672 1.5 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−2
 2.0 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−2
 1.5 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−2
 1.5 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−2
 1.5 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−2
 

3 11,302 3.5 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−3
 2.0 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−3
 2.5 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−3
 2.5 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−3
 1.5 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−3
 

4 11,725 2.0 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−4
 1.5 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−4
 1.5 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−4
 1.5 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−4
 1.5 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−4
 

5 12,491 2.0 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−5
 1.5 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−5
 1.5 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−5
 1.5 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−5
 3.5 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−5
 

6 12,932 2.0 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−6
 2.0 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−6
 2.0 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−6
 2.0 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−6
 2.0 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−6
 

7 13,242 2.0 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−7
 2.0 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−7
 2.0 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−7
 2.0 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−7
 2.0 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−7
 

8 13,401 2.5 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−8
 2.5 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−8
 2.5 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−8
 2.5 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−8
 2.5 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−8
 

9 13,453 2.0 𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−9
 2.0 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−9
 3.0 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−9
 2.0 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−9
 2.0 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−9
 

10 13,507 2.5𝐴𝐴 𝐴𝐴
(2)

𝑠𝑠𝑠𝑠𝑠−10
 2.5 𝐴𝐴 𝐴𝐴

(3)

𝑠𝑠𝑠𝑠𝑠−10
 3.0 𝐴𝐴 𝐴𝐴

(4)

𝑠𝑠𝑠𝑠𝑠−10
 2.5 𝐴𝐴 𝐴𝐴

(5)

𝑠𝑠𝑠𝑠𝑠−10
 2.5 𝐴𝐴 𝐴𝐴

(6)

𝑠𝑠𝑠𝑠𝑠−10
 

Table 3 
LOOIC Values for the Best Candidate BHMC for Different Lead Times and Structure Specifications
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3.2. Cross-Validation

Figure  3 displays cross-validated streamflow ensembles forecast from the best BHMC for 2013 (the highest 
flow year on the record) at Handia gauge for 1–4-day lead times. Most of the high flows (except 19 August) 
are captured by the BHMC streamflow forecast ensemble spread up to a 3-day lead time. Also, the ensemble 
mean is closer to the highest observed flow on the record (24 August). For 4–10-day lead times, neither VIC nor 
BHMC ensemble forecast can capture the timing and magnitude of the peak flows. The other gauges show simi-

Figure 3. Times series of observations, Variable Infiltration Capacity (VIC) forecast, and cross-validated Bayesian 
hierarchical model combination (BHMC) ensembles forecast of daily monsoon streamflow for 2013 at Handia gauge for 
(a) a 1-day, (b) a 2-day, (c) a 3-day, and (d) a 4-day lead time. Black lines denote observed streamflow, light blue lines VIC 
forecast, orange lines BHMC ensemble mean, and orange and light orange bands 50% and 90% ensembles credible intervals.
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lar performance (Figures S1–S4 in Supporting Information S1). The overall assessment of the BHMC ensemble 
forecasts is presented in the following sections.

3.2.1. Homoscedasticity of the Residuals

Homoscedasticity of the residuals (i.e., constant error variance for all magnitude of forecasted flows) is a desired 
feature of a forecast model. Still, for higher flow values, heteroscedasticity is not uncommon. To examine the 
degree of heteroscedasticity at the five gauges in the NRB, Figure 4 shows the relationships between forecasted 
streamflow and the corresponding forecasted error from the BHMC cross-validation for three lead times. The 
BHMC forecasted flows show low heteroscedasticity in the ensemble mean (orange lines oscillating around the 
null error line) compared to VIC forecasted streamflow (gray points) for 1- and 2-day lead times (Figures 4a–4j) 
at all gauges except for Garudeshwar. At Garudeshwar, the BHMC ensembles overestimate (Figure  4a) and 
underestimate (Figure 4f) high flows for 1- and 2-day lead. Low heteroscedasticity is also checked until the 5-day 
lead time (Figure S5 in Supporting Information S1). For the 6-day lead time (Figures 4k–4o), although there is a 
reduction of the error in the ensemble means, they exhibit a clear positive trend at all gauges. This trend is also 
observed from 7–10-day lead (Figures S5 and S6 in Supporting Information S1), indicating that homoscedasticity 
is not achieved at lead times longer than 5-day lead.

3.2.2. Accuracy Metrics

Figures 5 and 6 display error bars of the BIAS and Pearson correlation coefficient (R), respectively, for the entire 
period (2003–2018) and the three flow event strata (low, midrange, and high forecasted events) as a function of 
lead time at the five gauges of the NRB. For the entire period and high flow event strata, the BHMC forecast 
outperforms the VIC forecast significantly (95% confidence levels [CLs] do not overlap) based on the BIAS for 
most of the lead times with the median close to zero, except at Garudeshwar for lead times longer than 6-day 
(Figures 5a and 5d). These enhancements translate into absolute bias reductions ranging between 28% and 140%, 
highlighting the high bias reduction for Garudeshwar. In the case of the correlation (Figures 6a and 6d), the 

Figure 4. Plots of forecasted error versus forecasted streamflow at the five gauges of the Narmada River basin (NRB) for three lead times. Orange lines denote the 
ensemble mean; orange and light orange bands 50% and 95% confidence intervals; and the gray dots the errors in Variable Infiltration Capacity (VIC) forecasted 
streamflow. Rows and columns are associated with error uncertainty obtained from Bayesian hierarchical model combination (BHMC) cross-validation for three lead 
times and different gauges of the NRB. The forecasted error corresponds to the historical flow minus the forecasted flow from the ensembles.
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Figure 5. Error bars of BIAS as a function of the lead time at the five gauges of the Narmada River basin (NRB) for (a) the entire period, (b) low, (c) midrange, and (d) 
high flow forecasted flow events strata. The points and error bars denote the medians, and the 95% confidence levels (CLs) obtained through bootstrapping.
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Figure 6. As in Figure 5 but for the Pearson correlation coefficient (R).
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BHMC forecast at least preserves (95% CLs almost overlap) the correlation of the VIC forecast, and R median 
values are above 0.6 for 1–3-day lead times. For the low flow strata, there are considerable reductions of the BIAS 
relative to VIC (medians close to 0) at all gauges up to a 3-day lead time (Figure 5b). Besides, there is an increase 
in BIAS (positive BIAS) relative to VIC at Hoshangabad and Sandiya gauges for lead times above 5-day. For the 
correlation coefficient (Figure 6b), for a 1-day lead, there is no significant difference between HBMC and VIC for 
all gauges but Mandleshwar. From the 2-day lead time on, a considerable improvement on R is seen at all gauges 
except for a few cases (e.g., Garudeshwar for 3-day lead time). Lastly, in the case of the midrange flow strata, 
BHMC outperforms VIC based on the BIAS for all lead times except for the Sandiya gauge from 5- to 10-day lead 
time (Figure 5c). For R (Figure 6c), R values’ improvements are observed at most gauges for 2–10-day lead times. 
For a 1-day lead time, there are no significant differences between BHMC and VIC forecast.

Figure 7 presents the error bars of CRPSS from BHMC with respect to lead time at all gauges for the entire period 
and the three flow strata. Compared to the VIC forecast (orange colors scheme), the BHMC forecast yields a 
substantial improvement in skill (95% CL and median above 0.2 and 0.4, respectively) for the entire period and 
all the flow strata at most of the gauges, except for the low flow forecasted after the 5-day lead time (Figure 7b). 
On the other hand, BHMC yields a significant increase in skill at all gauges compared to observed climatology 
(purple colors scheme) for the entire period and the three strata up to 5-day lead times. For 6–10-day lead times, 
differences in skill between BHMC and climatology are negligible for the entire period and the three strata.

3.2.3. Reliability and Sharpness

The reliability metric, PIT plots, of the BHMC forecast for different lead times and the α-index versus the lead 
time for the five gauges of the NRB are shown in Figure 8. From 1- to 3-day lead time (Figures 8a and 8b), the 
PIT plots are very close to the 1:1 line for all gauges, except for Garudeshwar at the 3-day lead (slight under 
forecasting), indicating good forecast reliability. From the 4-day lead time on (Figures 8c–8e), PIT plots are 
also reasonably close to the 1:1 line but tend to fall above it, indicating under forecasting. However, PIT plots 
fall inside the 95% Kolmogorov-Smirnoff confidence intervals for all the gauges. The α-index plot confirms the 
excellent reliability for 1–3-day lead times (above 0.94 except for Garudeshwar at a 3-day lead). It also exhibits an 
abrupt reduction for the 4-day lead time at all gauges except at Handia (drops up to 0.9). Also, it shows a sustained 
decline until the 9-day lead time, but its values remained high (above 0.87).

To assess the reliability of the forecasted flow events strata, Figures 9 and 10 display PIT plots for the three 
strata (low, midrange, and high flow forecasted events) for 1- and 4-day lead times, respectively. For a 1-day lead 
time (Figure 9), the low flow strata exhibit the lowest reliability of the three strata, with PIT plot shapes varying 
between under forecasting, over forecasting, and overconfident (s-shape) at different gauges. Also, PIT plots fall 
outside of the 95% Kolmogorov-Smirnoff confidence intervals at some gauges (Sandiya mostly). The PIT plots 
for midrange (Figure 9b) and high (Figure 9c) flow events strata are reasonably close to the identity line, and they 
fall inside the 95% confidence intervals. Still, their shapes are opposite—under forecasting for midrange flows 
and over forecasting for high flows. The α-index for low flows strata shows values above 0.79 and above 0.9 for 
midrange and high flows, indicating good reliability overall. Similar reliability performance is achieved for 2- and 
3-day lead times (Figures S7 and S8 in Supporting Information S1).

For a 4-day lead time (Figure 10), PIT plots for midrange and high flow strata (Figures 10b and 10c) exhibit 
shapes similar to those obtained in Figures 9b and 9c but accentuated for the midrange flow strata (PIT plots 
close to or falling outside of the 95% confidence intervals). PIT plots for low flow strata show good reliability at 
Handia, underconfident at Garudeshwar, and clear under forecasting at the rest of the gauges. These findings are 
reflected by the α-index (Figure 10d). The α-index values are below 0.9 for low flow strata at all gauges except 
Handia and above 0.9 for the high flow strata. Similar reliability is observed for longer lead times (Figures S9–
S11 in Supporting Information S1).

Finally, Figure 11 shows AWCI for various lead times for the BHMC and reference (observed climatology) fore-
casts at the five gauges to evaluate the forecast sharpness. BHMC forecasts (orange lines) have much narrower 
95% confidence intervals than the reference forecast (purple lines). For most of the gauges, the lowest AWCI 
occurs at 1- or 2-day lead time, and then it increases with lead time until a 6-day lead and remains relatively 
constant until a 10-day lead time. The exception is Garudeshwar, where the AWCI varies almost linearly from 
1- to 9-day lead times. Overall, this reflects the increasing forecast uncertainty at longer lead times.



Earth’s Future

OSSANDÓN ET AL.

10.1029/2022EF002958

13 of 20

Figure 7. Error bars of the continuous ranked probability skill score (CRPSS) as a function of the lead time at the five gauges of the Narmada River basin (NRB) for 
(a) the entire period, (b) low, (c) midrange, and (d) high flow forecasted flow events strata. The points and error bars denote the medians, and the 95% confidence levels 
(CLs) obtained through bootstrapping.
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3.3. Real-Time Forecast Performance for the 2021 Monsoon Season

As a short demonstration of the real-time application of the BHMC framework proposed, we obtained streamflow 
forecasts for July–August 2021 at the Handia gauge. We obtained stage data and corresponding streamflow for 
the 2016 season. We fitted the rating curve based on the simultaneous record of streamflow and stage for 2016 
(Figure S12 in Supporting Information S1). Observed streamflow at Handia for 2021 was obtained as estimates 
from the fitted stage–discharge relationship, as there is a delay in receiving the “official” flows from the water 
agencies. Figure 12 shows the times series of observed streamflow, VIC, and BHMC forecasted streamflow for 
the 2021 monsoon (July–August) season. Although both VIC and BHMC forecasts overestimate the observed 
streamflow between 27 July and 11 August at the three lead times, there is a clear improvement in the BHMC 
performance, as it captures most of the observations inside of the 50% credible interval (orange bands), excepts 
for a few days (e.g., 20 August). Also, the BHMC forecasts show high correlation and low BIAS, up to three 
lead times. Note that 2021 was not a wet year since all the observed streamflow values are below the historical 
median, 1,210 (m 3/s), from the calibration period (2003–2018). This demonstration of a real-time forecast for the 
2021 season offers bright prospects for skillful streamflow and river stage forecasts at long lead times, which are 
crucial for flood mitigation.

4. Discussion
The best candidate BHMCs selection showed that in addition to VIC forecasted streamflow, VIC simulated 
streamflow was selected as the second covariate at different lead times except for a 1-day lead time at Handia, 
where the observed precipitation was chosen as the second covariate. The VIC simulated streamflow has a strong 
streamflow persistence. Various authors have reported it as a significant skill contribution to streamflow forecast-
ing (Bennett et al., 2021; Li et al., 2015, 2016, 2017); hence it is selected in the model. We did not lag observed 
streamflow as a potential covariate since its inclusion does not allow the implementation of the framework for 
real-time forecasting, as there is a delay between when the streamflow is recorded and when it becomes available 

Figure 8. Probability integral transform (PIT) plots for forecasts Bayesian hierarchical model combination (BHMC) 
forecast at the five stations of the Narmada River basin (NRB) for (a) 1-day, (b) 3-day, (c) 4-day, (d) 7-day, and (e) 10-day 
lead time. (f) The α-index as a function of the lead time at the five gauges. Dashed lines in panels (a)–(e) denote the 95% 
Kolmogorov-Smirnoff confidence intervals.
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at each gauge in the study basin. As noted in the previous section, even for the 2021 season, the official stream-
flows are yet to be released. In addition, nonlinear transformations of the VIC streamflow forecast help reduce 
the bias related to high flow events, which is of interest.

Cross-validation results revealed that the BHMC approach enables handling the heteroscedasticity of the resid-
uals in terms of the ensemble mean until 5-day lead times. In addition, deterministic accuracy metrics showed 
enhanced performance of BHMC ensembles mean compared to the raw VIC forecasted streamflow—i.e., abso-
lute bias reductions of at least 28% for the entire period and the high flow forecasted events strata across the basin 
for all lead times. The highest bias reduction occurs at the terminal gauge (Garudeshwar), with values above 
100% for the entire period and midrange and high flow forecasted events strata. Significant bias reductions for 
the low flow forecasted strata are obtained only until 5-day lead times. Regarding the Pearson correlation coef-
ficients (R), results showed that BHMC enhanced or preserved the correlation between observed and forecasted 
streamflow for the entire period and all flow events strata at most lead times (high flow events at lead times higher 
than 5-day are the exception). The results also revealed a high correlation reduction after the 3-day lead time, 
which is caused by the poor precipitation forecast skill for lead times longer than 3-day. Furthermore, the ability 
of BHMC to capture the temporal coherence is not ensured by QM (Zhao et al., 2017), an approach widely used 
in hydroclimate applications and employed by Tiwari et al. (2022) to postprocess the VIC streamflow forecast 
considered for this study.

Regarding the probabilistic accuracy metrics, CRPSS error bars showed that BHMC ensemble forecast stream-
flow outperforms raw VIC streamflow forecast for the entire period—i.e., skill improvements of at least 40%. The 
BHMC forecast skill results were consistently better than the VIC streamflow forecast for the three strata (low, 
midrange, and high flows forecasted events strata) at all gauges but for the two upper gauges (Hoshangabad and 

Figure 9. Probability integral transform (PIT) plots for forecasts Bayesian hierarchical model combination (BHMC) forecast 
at the five stations of the Narmada River basin (NRB) for a 1-day lead time for (a) low, (b) midrange, and (c) high flow 
forecasted events strata. (d) The α-index as a function of lead times at the five gauges. Dashed lines in panels (a)–(e) denote 
the 95% Kolmogorov-Smirnoff confidence intervals.
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Figure 10. As in Figure 9 but for the 4-day lead time.

Figure 11. Average width of the 95% confidence intervals (AWCI) of the Bayesian hierarchical model combination (BHMC) 
ensemble streamflow forecasts as a function of the lead time at the five gauges of the Narmada River basin. The reference 
forecast corresponds to the observed climatology.
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Sandiya) at lead times longer than 5-day. Compared to climatology, BHMC performs better for the entire period 
and flow events strata until 5-day lead time and with similar skill at longer lead times. This feature is consistent 
with the findings of other studies (Bennett et al., 2017, 2021). Further, PIT and AWCI plots showed that the 
BHMC frameworks provide sharp and reliable streamflow forecast ensembles until the 3-day lead times for the 
entire period and flow events strata, except at some gauges for the low flow events strata.

The results of this study indicate that the proposed BHMC framework can improve the forecast skill by reducing 
the nonsystematic bias in VIC model forecasts. This improved the temporal coherence and forecast reliability 
until 3-day lead time, until when the precipitation forecasts are skillful. For lead times longer than 3-day, accu-
rate meteorological forcings are unavailable, and physically based models cannot predict streamflow processes 

Figure 12. Times series of observations, Variable Infiltration Capacity (VIC) forecast, and Bayesian hierarchical model 
combination (BHMC) ensembles forecast of daily monsoon streamflow for 2021 at Handia gauge for (a) 1-day, (b) 2-day, 
and (c) 3-day lead time. Black lines denote observed streamflow, light blue lines VIC forecast, orange lines BHMC ensemble 
mean, and orange and light orange bands 50% and 90% ensembles credible intervals.
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well. In that case, the BHMC proposed cannot fully correct the streamflow forecast errors as the covariates in 
the model are not skillful. Consequently, it can only provide a significant bias reduction but not a reliable fore-
cast. This drawback could be overcome by including outputs from additional hydrological models, which could 
capture other features of streamflow processes, as potential covariates (e.g., Georgakakos et al., 2004; Krishna-
murti et al., 2000; Mendoza et al., 2014; Rajagopalan et al., 2002).

In order to account for the impact of reservoir operations in the NRB, the VIC model implementation included a 
reservoir module and observations of water level storage at reservoirs in the basin for its calibration. Nevertheless, 
the observed water storage level was not included as a covariate in the Bayesian model as it is not available in 
real-time at present. However, if this information were available in future or in another basin where the BHMC is 
considered for implementation, it can be incorporated as a covariate to capture the reservoir effects.

5. Summary and Conclusions
The high occurrence of floods during the monsoon season due to most of the rainfall in India falling during 
this season and the unavailability of an accurate and robust streamflow forecast system have posed the need for 
skillful daily streamflow forecast over this region. To address this need, we adapted the Bayesian hierarchical 
framework developed by Ossandón et al. (2021, 2022) to incorporate multiple sources of information and provide 
robust real-time daily ensemble streamflow forecasting across a rainfed river basin. This BHMC considers a 
Gamma marginal distribution and includes information from different sources as covariates in the second layer of 
hierarchy. The study case presented here aims to generate real-time daily ensemble streamflow forecasts for the 
monsoon peak season (July–August) in the NRB in Central India.

Overall, the results obtained in this study demonstrate the enormous potential of this framework for short-term 
(1–3-day lead time) streamflow forecasting in the NRB, complementing and enhancing the current operational 
flood forecasting system (CWC, 2015). In a future extension of this work, additional hydrological and meteoro-
logical model forecasts can be incorporated into the framework as potential covariates in the BHMC. Further, the 
proposed framework can be easily implemented in other river basins worldwide, with varied network topologies 
and climates. Finally, the proposed framework has the potential to provide a skillful stage (water levels) forecast 
in the NRB, which will be of immense help to emergency managers, as it is the key decision variable for public 
officials in evacuations and mitigation.

Data Availability Statement
The data set used in this study, which consists of time series of potential covariates and daily streamflow for the 
peak monsoon season (July–August) at five station gauges in the Narmada River basin, and the scripts for the imple-
mentation of the BHMC proposed here, can be downloaded from https://zenodo.org/badge/latestdoi/502150441.
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